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WITH SUBSONIC LEADING EDGES TRAVELING
AT SUPERSONIC SPEEDS

By Percy J. Bobbiltt
SUMMARY

Pressure-distribution expressions and stability derivetives have
been derived by use of linear theory for zero-end-plate triangular
vertical tails with subsonic leading edges performing rolling, yawing,
and constant-lateral-acceleration motions. Corresponding results for
the sideslip motion, most of which have been previously reported, are
also Included hereiln.

Consideration is given to the effect of end plates on the forces
acting on the vertical tail. Stabllity-derivative formulas for a
vertical tail in the presence of a complete end plate obtained from
wing results are also presented, together with a suggested approxima-
tion for partial-end-plate effects.

The aerodynamic demping of the lateral oscillation in yaw is
approximated to the first order in frequency from the damping of the
yewing and constant-lateral-acceleration motions. Illustrative varla-
tions of the stability derivatives for the special case of the half-
delta tail for all the motions considered are included.

INTRODUCTION

Information available at present that pertains to the aerodynamic
forces acting on various tall arrangements is, in many instances, insuf-
ficilent to allow the accurate prediction of the lateral dymamic behavior
of aircraft traveling at supersonic speeds. Theoretical results now
available are, for the most part, concerned with tail configursations
elther in a rolling or in a sideslip attitude (see refs. 1 to 11).
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For the sideslip motion, the effects of Mach number and aspect
ratio on the aerodynamic loads of a mumber of tail configurations with
both one and two planes of cross-sectional symmetry have already been
investigated extensively. The same effects on tall arrangements in a
rolling motion have also received considerable attention but it has, in
the main, been directed toward tails with two planes of symmetry such
as cruciform arrangements. Additional theoretical analysis devoted to
the evaluation of the Mach number and aspect-ratio effects on the forces
and moments acting on tail systems in roll with one plane of cross-
sectional symmetry is required.

Talil arrangements performing a steady yawing motion or a constant-
lateral-acceleration motion have received little attention to date in
the literature. Yet the forces and moments produced by these motions
are by no means negligible, and some indication of their magnitudes is
necesgsary, particularly at supersonic speeds, in order to evaluate their
relative importance on lateral stability.

The primary purpose of this paper is to provide the pressure-
distribution expressions and corresponding stability derivatives for
isolated triangular vertical tails with subsonic leading edges per-
forming yawing, rolling, and constant-laterasl-acceleration motions.
Some of these results in turn are used to approximate to the first
order in frequency the damping of the vertical tail oscillating in
vaw (one degree of freedom).

A secondary objective, in view of the geometric nonplanar charac-
teristics of tall arrangements, is to glive consideration to the estima~
tion of the mutual aerodynamic interference that exists between the
vertical and horizontal tails. In this conmection the stability deri-
vetives for the vertical tail in the presence of a complete end plate
have been included.

For completeness, results for the no-end-plate and complete-end-

plate vertical tails in a sideslip motion obtained from references 9
and 11 are also presgented.

SYMBOLS

The positive directions of the forces, moments, velocities, and
angles are shown in figure 1.

X,¥,2 coordinates of field point

@©
]
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X1,21 coordinastes of doublet
g =%

X1
X0s20 distances origin is displaced relative to tail apex
t time
u incremental velocity in x-direction
v y-component of velocity
W z-component of velocity
v free-stream velocity
a speed of sound |
P rolling angular velocity
r yawing angular velocity
a angle of attack
o rate of change of o with time
B sideslip angle
! rate of change of B with time
p £luid density
qQ free-stream dynamic pressure, %pva
AP pressure difference between opposite sides of a surface
B = (Y-) -1

a

K constant determining degree of homogeneity of quasi-

conical velocity field
¢ velocity-potential function

? potential of supersonic doublet distribution




Pa

Alx,z)

f(a)
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potential of line of doublets

steady-state potential corresponding to unit angle of
sideslip

steady-state potential corresponding to' unit yawing
velocity about z-axis

doublet-strength function
line-doublet-distribution function
span of vertical taill

vertical-tail area

N

aspect ratio of vertical tail,

i

apex angle of tail
tangent of apex angle

ratio of slope of leading edge of tail to slope of

trailing edge of tall, 1 - 2BC

By

1 - V1 - 822

k =

E'(BC)

K'(BC)

E' (k)

BC

complete elliptic integral of second kind with modulus

y1 - B2C2, fﬂ/a V1 - (1 - B%2)sin®n dn
o .

complete elliptic integral of first kind with modulus

¢Ii:—£§E§; \/pn/e an

O /1- (1- B2?)sincn

complete elliptic integral of second kind with modulus

2
1 - %2, f:/ |/1 - (1 - ¥2)sin®n dn
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K'(x) complete elliptic integral of first kind with modulus

VIf:EEiJfﬁ/a ) an

° V& - (1 - ¥®)sinn

M,N, M' :N' constants
N = mNBC
1 infinitesimally small quentity
1 - B2
a(BC) =
(1 - 28%¢2)E' (BC) + B2C%K’ (BC)

= x - B2z0

7 =
1 - 322 |fx2 - B2(y2 + z2)
- g2
g = 1im 7 = 1 B<00
%y-—m Vl - B262|1 - B2p2
R t
C1 rolling-moment coefficient, olling momen
aSyby
Cn yewing-moment coefficient, —oaing moment
aSvyby
Cy side-force coeffieient, Side force
aSy

¢y _(a_cl>

P \%B /g0

oc

C1p = (o

b Db,

V/p—0
ac

Ci. = i

V /r—0
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Subscripts:

P . rolling condition

r yawing condition

B | sideslip condition

B constant-lateral-acceleration condition
0 zero-end-plate configuration

C complete-end-plate configuration

P partial-end-plate configuration

SCOPE

Derived in this paper are expressions for the surface pressure
distributions on isolated triangular vertical tails performing yawing,
rolling, and constant-lateral~acceleration motions. These pressure
expressions have in turn been used to calculate the stability deriva-
tives associated with the side force, yawing moment, and rolling moment

due to constant yawing (CYr’ Cnr’ and Clr)’ constant rolling (?Yp,
Cnp, and ClP)’ and constant lateral acceleration (CYﬁ’ Cné’ and
Clé)' Also presented are the aerodynamic coefficients CYB, CnB’ and

CZB obtained from the sideslip pressure-distribution expression given

in reference 11. 8tability derivatives presented for the vertical
tail of figure 1 mounted on a complete end plate are CYB, Cnﬁ,

CYf: Cnr’ CYé’ and Cné' The equation of CZB for a triengular-

verticalftail-end-plate combination may be derived from the pressure
distributions given In reference 9. This equation has not been deter-
mined and only curves of CzB taken from reference 9 for a vertical-

tall—complete-end-plate combination with trailing edges perpendicular
to the root chord (see fig. 2) are presented.

The stability derivatives presented herein are valid within the
limits of linear theory for a range of Mach numbers for which the leading
edge is subsonic and the trailing edge supersonic. Variations of all
the stability derivatives with the parsmeter BC are presented for a
trianguler vertical tail with zero trailing-edge sweep (half-delta tail).
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ANALYSTS

The exes system used in the analysis and the positive directions
of the forces, moments, velocities, and angles are shown in figure 1.
The positive directions of the forces and moments in the analysis sys-
tem have been fixed to conform to the positive directions of the forces
and moments in the stability axes system (see fig. 3(a)). The stebility-
derivative expressions are derived in the body of the report with respect
to the analysis system whose origlin is at the apex of the tail. Transfer
formilas are presented, however, which allow these derivative expressions
to be determined for a system of axes whose origin is displaced longi-
tudinally and vertically with respect to the apex of the verticel tail.

(See fig. 3(b).)

The ensuing analysis is based on linearized theory and the results
are restricted to vertical talls of zero camber with surfaces of van-
ishingly small thickness. These conditions impliecltly stipulate that
the results are valid only for small angles of sideslip, small rates
of change of the sideslip angle with time (é motion), and low rates of

rolling and yawing.
Throughout the analysls, when the -potential of a surface in the
xz-pktane is referred to, 1t is considered to be the surface potential

on the side of the vertical tail whose outward normal is in the posi-
tive y-direction; that is,

¢ = ¢(X:O+:Z)
and for a surface in the xy-plane,
¢ = ¢(x:y:0+)

Pressure differences between opposite sides of a surface are formulated
as follows:

For a surface in the xy-plane,

AP = P(x,y,0t) - P(x,y,0")

and for a surface in the xz-plane,

AP = P(x,0%,z) - P(x,07,2)
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Determination of Pressure-Distribution Expressions
for Yawing and Rolling Motions

A method for solving supersonic-flow boundary-value problems
governed by the classical, linearized, partial-differential equation

g2 O %8 3% _ (1)
X% 2 3

has been developed in reference 12 and an application to rolling and
pitching triangular wings i1s given in reference 135. This method allows
the prediction of the disturbance-potential function ¢, and hence the
pressure distribution, for planar 1ifting surfaces. The analysis given
in reference 13 i€ briefly summarized herein and is applied to the
determination of the pressure distributions and associated forces and
moments acting on a triangular vertical tail surface (fig. 1) performing
rolling and yawing motions. (Yawing in the xz-plane is analogous to
pitching in the xy-plane.)

The determination of the form of the velocity potential.- As is
well-known, the potentials of both the supersonic gource and the super-=
sonic doublet and their distributions represent solutions of equation (1).
For the determlnation of the potentials and pressure distributions of
lifting surfaces of the type considered: herein, that is, for lifting
surfaces with subsonic leading edges, it is well-known that a distribu-
tion of doublets that uniquely satisfies the prescribed boundary condi-
tions mist be determined. These boundary conditions on the vertical
tail for the motions to be considered herein are as follows:

On the roliing vertical tail,

v =pz =xp Z = xp0 (2)

v = -rx (3)

In addition, the following relations mist be valid on the surfaces
of the taill:
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For the rolling motion,

5 P (%)
aa(}%)p ,
';;E;—‘= 0 (5)
and for the yawing motion,
G _, ”
»
(X
ag:)r =0 (1)

The potential in space produced by a distribution of doublets, for
example, in the xz-plane, with the doublet axes normal to the plane is

Pp(x,y,2) = % L[/‘ ~A(xy,2y)dx) dzy (8)
5 ‘/(X - xl)2 - B%(z - Zl)2 - B2y2

where the area S 1s the region of the xz-plane intercepted by the
forecone from the field point (x,y,z).

The potential on the surface carrying the doublet distribution is
given by

¢D(X:Z)y:l-0 = 1im 9 ’A(Xl,zl)d_xl dzy _
y—>10 |9y Vg l/(x ) xl)z ~ 20 - 21)2 Y
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As stated in reference 15, this surface potential is directly propor-
tional to the doublet-strength function A(x,z); that is,

¢D(x’z)y=i0 = *ﬂA(x;Z) (9)
The surface-pressure velocity u(x,z) therefore is

u(x,2)y=to = %(x;)ﬁo = in 9‘1;—’;’—2) (10)

and the linearized lifting-pressure coefficient

P ’-Lu(x,z)y=+o

q - (11)

may be written as

A_': — )iﬂ_ aA(x,z) (12)

vV o ox

The problem to be considered in this paper is one In which the
sidewash on the surface is prescribed (see egs. (2).and (3)) and the
surface velocity potential has to be determined. The doublet-strength
function A(x,z) +then is an unknown and the determination of this
quantity requires in general the solution of an integral equation. Imn
some cases the general form of the surface-potential function A(x,z)
is known or can be obtained by inverting an integral equation. The
problem then resolves simply into an evalusation of the arbitrary con-
stants of the general solution by meking use of the prescribed boundary
conditions.

Brown and Adems in their analysis of triangular wings with subsonic
leading edges (ref. 13) were sble to determine the function A(x,z) for
these wings undergoing various motions by utlilizing the concept that the
conical properties of the produced flow gave rise to potentials and
pressures in the crossflow planes that were similar in form to the
potentials and pressures acting on flat finite segments in a two-
dimensional flow; these segments correspond to a section of the wing in
any crossflow plane. Thig remerksble connection between linearized
supersonic conical flow and incompressible two-dimensional flow is dis-
cussed by Busemann in reference 1k4.
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A more general and rigorous approach to obtain the doublet-strength
function may be formulated from an anslysis presented in a later paper
by Lomax and Heaslet (ref. 15) dealing also with conical and the so-called
quesi-conical problems. In this analysis a general surface-pressure-
coefficient expression has been determined for planar 1ifting surfaces
with prescribed boundary conditions of the form

v ~ xkg(Z) (13)
This expression is
K+l b ei
£ - (5)F 1 (14)
4 = {(c - e)(e - c1)

where bjy are constants, 6 = %, k is determined by the boundary-

condition equation (eq. (13)), and C and C3 are the tangents of the
apex angles of the two panels of the lifting surface. When Cj =C,
the lifting surface is symmetrical about the common root chord of the
two panels, and when Cj # C, the lifting surface is asymmetrical about
this chord. From equation (12), which relates the function A(x,z) to
the pressure coefficient, and equation (9) the form of A(x,z) or,
synonymously, the form of the surface potential, msy be obtalned by a
simple integration. It should be mentioned at this point that refer-
ence 15 presents a method for deriving the arbitrary constemnts by in
the pressure coefficient (eq. (1%)). This method is related to that of
reference 13 which concerns itself with obtaining the arbltrary constants
in the velocity potential.

By application of equation (14) to the boundary problem of the
vertical tail sketched in figure 1 (C; = 0) and by noting from the pre-

scribed boundary conditions (see egs. (2) and (3)) that & = 1, the
pressure coefficient for both the yawing and rolling motions is

2
_Aj_:%bO"'ble +b26
4 J(c - e)e
The constant bg in this expression must be set equal to zero in order

to satisfy the condition that along the streamwise edge the pressure
must be zero.

(15)
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The veloclty potential on the vertical tall surface is easily
obtainable from the pressure expression by the formla

>4
¢ = I\jp ég-dxl
hJpE @

<

and has been found to be

g = nxaf(i) _ , (16)
where

f(%) =f£(®) = (M + KC)fo(c - 0) (17)

The arbitrary constants in the so-called distribution function £(8)
are, in terms of b; and by,

M=v.2ﬁ+b_2.
BiB\ag2  C

v b1
2¢B 302

By relating equation (16) to equation (9), the doublet-strength func-
tion A(x,z) is seen to be

_ Alx,z) = x‘?-f(-}zz> (18)

A comparison of the potential of equations (16) and (17) and the
potential obtained for the slender, rolling, vertical taill reported in
reference 5 shows, as expected, that both are of the same form.

Evaluation of the constants M and N.- The constants M end N
in the expressions for the velocity potential given by equations (16)
and (17) are still to be determined. As indieated previously, the
expression for the pressure coefficlent, and hence the velocity poten-
tial, can be determined completely through an application of the pro-
cedures developed in reference 15; however, many of the integrations
and integrating procedures required in the method in reference 13 were
already known to the author at the inception oZf this project and, for
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this reason, the analysis herein to determine the constants M and N
closely parallels the procedures discussed in reference 13.

The determination of the constants M and N depends upon satis-
fying the boundary conditions associated with the vertical tail for the
rolling end yawing motions. These boundary conditions are given by
equations (2) to (7). The needed expressions for the prescribed veloc-
ities and their derivatives with respect to © 1in terms of the dis-
tribution function f(o) are derived in appendix A.

For the rolling motion the constants M and N may be obtained
by replacing f(o) by its equivalent (eq. (17)) in the equations given

in eppendix A for v/x and. éﬁ%éil and then applying the boundary

conditions given by equations (2) and (4). When the integrations have
been performed, the resulting equations may be solved simultaneously
for M, and Np- The yawlng constants are obtained in a like manner

with equations (3) and (6) replacing equations (2) and (%), respectively.

In the calculation of the quantities v/x and. éﬁ%gﬁl, any value

of © may be considered. It is edvantageous for integration purposes
to let this value of © be zero. However, since one of the limits of
integration is zero and since in several of the integrands a singular
point exists at © = o = 0, the integrations in which these singularities
occur must be performed for 6 arbitrary and then 6 1is set equal to
Zero.

Substituting equation (17) into equation (A4) gives,.for © equal
to zero,

v_1 J[BC ~-3(MBo + KBC)VBo(BC ~ Bo)tanh~1/1 - B262 N 2(MBo + NBC)YBo(BC - Bo) a(Bo) +
x B o 5/2 2)° ’
(1 - B22) (1 - B202)

lm { lim l‘]FB(e-n) (MBo.+ NBC)VBo(BC - Bu) (L - B208 )%/ - B2o2 a(Ba) +

8—0 |n—=0/2 Yo (1- 3202)2(30 - Be)2

;ﬁc (B0 + WBC)/Bo(BC — Bo)(1 - B208) }A - B202 a(80)

B JB(e+n) (1- 3%2)2(135 -m)?

2(vp0 + NBC)VES (BC - B8 )WL - B2

- (9)
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Carrying out the integrations in equation (19) yields

'(x) E@M + W2(1 + k2ﬂ -

»l<

= s {K
BY1 + k2(1 - k2)2

E'(k) [Mc(1 + ¥2) - T(1 - 42 + k“)__l} . (20)
Where
- \/ - 2
‘o 1 1 - BC (21)
BC
and

¥ = mec = § —=
1+ k2

These integrations were accomplished with the aid of the tables in
references 16 and 17 and are discussed in sppendix B.

Substituting the distribution function into equation (A5) results
in, for © approaching zero,

3(v/x) =fBC 3Ba(MBo + MBC)YBo(BC - Bo)tanh™ L1yl - B202 _ 3Bo(MBo + NBC ) VBo (BC - B{ld(m) .
0 0 (1 - 3202)5/2 (1 - 3202)2

vm | 1im fB(e'“) B9 (MBo + NBC)VBo(BC - Bo) _ (MBo + NBC)V%U’(BC - Bo)
8—>0\n—0 1“0 V1 - B%2(Bo - B9)° Vi - 82%2(1 - B262)(Bo - B9)

2(MBo + NBC)VBo(BC - Bo)YL - B2 a(80) +fBC B9 (MBo + NBC)VBo(BC - Ba) )
(Bo - B )0 B(e+n) | i - B22(Bo - B0)°

a(Bo) -

(4o + WEC)Bo(BC - Bo) 2080 + WO)VBo(E0 - Bo)Vh - B'c‘ﬂ
V1 - B22(1 - B262)(Bo - BO) (Bo - B8)°

280 (M0 + NBC)/BO (B0 ~ BC)  2[-4B22M + BOBC(3M - 2N) + MB2C2]/L - B2%2
Byl - B2 BnyBo (B9 - EC)

(22)
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By performing.the integrations in equation (22), the following
expression is obtained:

o(v/x) _ . t EZK’ (k) (M + MK® + 2Wk) +
® V1 + x2(1 - k2)2
E'(k)(2Mk2 - 2M - Nk - mh-ﬁéﬂ (23)

Consider the rolling case; that 1s, M= My, N = Np, and from
equations (2) and (%) v/x and ﬂi@ are, for © = 0, equal to O

and p, respectively. Solving equations (20) and (23) for M, and Np,
ok )

with N = BCNp =l k2NP’ glves
+ k=
M, = —py1L + k2L;_2(l + k2)K' (k) + (1 - bk + k’+)E’(k)] (24)
% EleK‘(k)2 + k2(1 + K2)K'(k)B' (k) + (2 - k2)(1 - 2kR2)E' (k)2
N = p(1 + k2)3/2 [21:21(’(1:) - (1+ k2)E'(kg__|

) a.rEk‘+K' (k)2 + K2(1 + ¥2)K' (X)E' (k) + (2 - k¥2)(1 - 2k2)E'(k)2]
' (25)

For the yawing case M = Mr,_ N = 2k 5 N, and from equations (5)

14 K
0/x)x _ . Solving equations (20) and (23)

and (6) .Y =-r and
x o
simultaneously after making these substitutions ylelds

Brk\L + 552@1{ (k) - (1 + ka)E'(k)j (26)

:rEkb'K'(k)a + X2(1 + ¥2)K'(X)E' (k) + (2 - ¥2)(1 - 21;2)-}3'(};)’{’

Mr
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aﬂ1+ﬂ?k@%1+@m%m-2u-k2+&m%ﬂ]

N, =
EztkEkl"K'(k)2 + k2(1 + ¥2)K' (K)E' (k) + (2 - ¥2)(1 - 2k2)E'(k)2:|

(27)

It is convenient for plotting purposes and in expressing the aero-
dynamic coefficients to make the following definitions:

_ IBI'W
Mp =M -
Ny = §' BE
} (28)
My =" £
M= %

so that M.', N.', My', and .Np' are functions of BC only. The
variations of these four parameters with BC are shown in figure k4.

The velocity potentials for the rolling and yawing motions, com-~
pletely defined by the velocity potential (egs. (16) and (17)) and the

constants given in equations (21), (24), (25), (26), (27), and (28),
may now be wriltten as

Bo = 2x2(My'e + Np'C)fe(C - o) (29)

and

gr = Brx2(Mp'e + N,.'C)/o(C - 8) (30)
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The pressure coefficients for the rolling and yawlng motions found
from equations (29), (30), (10), and (11) are

1 2 1 - 12
Cég) _ %? M,'Cz2 + 302N, 'xz - 2CNp'z (51)
4/p Vz(Cx - z)

and

(32)

(AP) opr Mp'Cz2 + 3C2N,.'xz - 20N, 'z2
3 .

q
v Vz(Cx - z)
Determination of the Surface-Pressure-Distribution Expression
for Constant Lateral Acceleration

The lateral-acceleration p motion is time dependent and is not
governed by equation (1) but by the linearized partial-differential
equation for unsteady supersonic flow:

&

2% B¢ PP oy PP 1 B _
e % a2 e me ° (33)

&
o

The boundary condition for the B motion on the tall surface, which is
approximately in the y = O plane, is

v=§yg=éw (34)

The potential function satisfying equations (33) and (34) may be obtained
from the a potential function glven in reference 18 for a wing in the
Xy-plane which was in turn obtained from an analysis by Gardner (ref. 19).
This potential function is

A |
@) = B[ v - (v - Exx (55)
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where 1 1s the steady-state potential corresponding to a unit yawlng
velocity about the z-axis and X 1is the steady-state potential corre-
sponding to a unit angle of sideslip. Thus it is seen that the potential
function for the § motion may be written in terms of the time-independent
solutions already obtained. It should be noted that equation (35) dif-
fers from the formula given in reference 18 by two negative signs, one
before the whole expression and one before the second term within the
brackets. These two sign differences are necessary to account for the
fact that the boundary conditions for the B and B motions

v =BV
v = Vvt

are opposite in sign to those for the a and & motions

w = —-aV
W = -Vt

These sign differences on the boundary conditions for the analogous
motions require that thelr potentials and pressures be of opposite
sign.

The pressure distribution for a time-dependent motion at the
time +t = 0 from the linearized Bernoulli's equation is

T\ . 2p@ -gg + g%) (36)

q_—

Equation (36) in conjunction with equation (35) yields

&

L) @) eax|  on
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The pressure coefficient for the sideslip motion may be obtained from

reference 11 as
el )
(3 5" () \[2(Cx - 2)

The reciprocal of the complete elliptic integral E'(k) appearing in
equation (38) is plotted in figure 4 for various values of leading-edge
sweep parameter BC.

(38)

The expression for X, the only quantity in equation (37) as yet
undetermined, can be obtalned by substituting equation (38) with B =1

into
_ _Vv AF (x]_:Z) 3

and carrying out the indicated integration. This process gives

o ¥ (1 - V1 - B2c2>v€(0x - z) (40)
BCE' (k)

The pressure coefficient for the B motion is now completely defined by
equations (32), (38), (37), and (4O).
Force and Moment Coefficients for
Zero-End-Plate Triangular Tails
With the pressure distributions known (egs. (31), (32), (37), and

(38)) the total side force, yawing moment sbout the apex, and rolling
moment about the root chord can be determined for the various motions

by the formulas

Side force = %[7h LP 37 ax (k1)
qu-
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o]
Sy

Rolling moment = g Uél;

Yawing moment x dz dx (k2)

2 |R

z dz dx (43)

e |’

The force and moment coefficients and the stabllity derivatives may be
readily obtained from these quantitles for zero-end-plate trianguler
tails and are given in table I.

Force and Moment Coefficients for Complete-End-Plate

Triangular Tails

For the sldeslip, yawing, and constant-lateral-acceleration motions
the pressures acting on the vertical tall In the presence of a complete
end plate are the same as the pressures acting on one-half of a symmet-
rical wing for the angle-of-attack, pitching, and constant-vertical-
acceleration motions, respectively. ZEach half of this symmetrical wing
should have the same plen form as the vertical tail under comsideration.
For the sideslip motion the pressures on the vertical and horizontal
tails with a partial end plate have been reported in reference 9.

Attention 1s now directed to the effect of end plates on the ste-
bllity derivatives. For the case,of the complete end plate the following
vertical-tall derivatives can be obtained from symmetrical-wing results

(ref. 20): Cyﬂ, Cnﬁ: Cy.., Cnr, CYﬁ’ and’ Cnﬁ' The transformations

needed to change the symmetrical-wing derivatives into these vertical-
tall derivatives are:

Expression for CYB = —CExpression for CIu’with A replaced by‘2Av>

ression for = ———-X ression for with A replsced b
Exp ‘ Cnl3 Shy (FbCP Cm,, D y2Av>

Expression for CYr 3Av

Expression for Cnr = —EL— X (Expression for Cp_ with A replaced by 2Av)
98,2 4

X (Expression for CLq'with A replaced by 2Av)
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Bxpression for CYB = ;ﬁ; X CExpression for CL& with A replaced by 2AV>

Expression for Cp, = —:Q— X (Expression for Cmd with A replaced by 2AV)
B a2

It should be noted that the gbove coefficients obtainable from wing
results do not include the rolling derivatives Czﬁ’ Czr, and Clé-

Before these serodynamic coefficlents can be evaluated, the rolling

moment induced on the end plate mist be determined. This moment for
the B motion has been derived in reference 9 but the induced moment

for the other two motions are not yet known.

RESULTS AND DISCUSSION

General

Table I contains the formmlas for all the p, r, B, and B stability
derivatives for the tail shown in figure 1. Table II presents these
derivetives for the half-delta tail (the special case of zero trailing-
edge sweep, AyB = 2BC). The variations of these half-delta derivatives
with the parameter BC have been plotted in figures 5 to 10. It is
evident from tebles I and IT that the expressions for the B derivatives
have been separated into two component parts, each part being multiplied
by a different function of the Mach number paerameter B. ZEach of the
components, excluding this factor, is a function of BC. TFigures 6, T,
end 8 show the variation of the two parts with BC for each of the
B stability derivatives. Once the Mach number, and hence B, has been
specified, the two parts msy be combined and the total derivative deter-
mined for any given aspect ratio or leading-edge sweep. For the reader's
convenience the variations of the B stability derivatives with Mach num-
ber for a number of aspect ratios of the half-delta tail have been plotted
in figures 11, 12, and 13. Mach number variations of the other half-
delta stability derivatives may be obtalned by inspection from thelr
variation with BC.

Side-force and yawing-moment coefficients (as obtained from ref. 20)
of the B, 8, and r motions for the complete-end-plate vertical talls have
been presented in table ITI. As in the case for the zero end plate, the
complete-end-plate stabllity derivatives for the half-delta tall are
presented in a separate table (table IV). The quentities 1/E'(BC) and
G(BC) appearing in the expressions for the complete-end-plate stability
derivatives have been plotted in figure 1k.
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It should be realized that the force and moments given by equa-
tions (41), (42), and (43) and the stability derivatives in tables I,
IT, ITT, and IV are for axis locations at the taill apex and root chord.
Formules for the tramnsfer of force and moment coefficients to a body
system of axes with the origin displaced a dlstance x, (positive
forward) from the tail apex end a distance 3z, (positive downward)
from the tail root chord (see fig. 3(b)) are presented in table V.

End-Plate Effect for Sideslip, Yewing, and
Constant-Lateral-Acceleration Motions

Figures 15 to 18 have been prepared to show, for the half-delta
tall, the effect of a complete end plate on the side-force and yawing-
moment aerodynamic coefficients. It is evident from the large magnitude
of the differences between the two limiting cases of a complete end
plate and no end plate shown in these figures that a reasonable estima-
tion of the partial-end-plate effects would be highly desirable. End-
plate effects for various sizes of horizontal tails for the sideslip
motion have been evaluated exactly in reference 9 but are not presented
herein. The following approximaste formulas for the side-force and yawing-
moment stebllity deriveatives based on these partial-end-plate results
are spuggested:

(CYr P .<0Yr c :(CYr c- (CYr>C; F

(cnr p = (Cnr)c zcnr o- (cnr o: F

> (1)

[CARNCAHNS

G (%¥p)c
Cop)e = (ag)e - [(oap)e - Cap)o]®

where

LG~ (o

(%)c (CYa 0
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It has been mentioned previously that the effect of end plates on
the rolling-moment coefficients has only been evaluated to date for the
sideslip motion (ref. 9). By using the results of reference 9, figure 19
has been prepared to show the variation with BC of the stabillty deri-
vative CIB for both a half-delta vertical tall mounted on a complete

end plate and an isolated half-delta vertical tail. Also plotted in
this figure are the vertical-tail and end-plate contributions to the
CzB derivative of the complete-end-plate—vertical-~tall combination.

Partial-end-plate effects on the rolling-moment coefficlents of a
vertical tail performing B and r motions cannot be approximated by equa-
tions similer to equation (44) since the contribution of the complete
end plate to the total rolling moment for these motions 1s unknown.

End-Plate Effects on Rolling Motion

In the analysis of end-plate effects, complete-end-plate stability
derivatives were evaluated by using wing results. This treatment was
possible because in the sideslip, yawing, and constant-lateral-
acceleration motlions the complete end plate acts only to uphold the
loading in the same manner as one half of a wing does on the adjacent
half. The complete end plate on a rolling vertical tail with, of course,
the edd plate rolling with the vertical tail causes a sldewash in the
plane of the vertical tail which can result in large induced losads,
depending on the size of the vertical taill relative to the end plate.
This is an end-plate effect very different in nature from the one experi-
enced in the sldeslip, yawing, and constant-lateral-acceleration motions
where the end plate does not cause a sidewash in the plane of the vertical
tail. Clearly then the complete-end-plate boundary can only be esta~
blished by solving the difficult nonplanar problem. However, some idea
of the end-plate effects msy be obtained by considering the results
shown In reference 5 for slender nonplanar tails. Reference 5 shows
that for ratios of vertical-tall span to end-plate span greeter than
0.75 the vertical tall does not experience any large changes in loading
due to the end plate. This fact suggests the possibility that the Mach
number and aspect-ratio effects on the isolated rolling tail (fig. 9)
might be applied to the slender, nonplenar, vertical-tail loadings of
configurations with ratios of the vertical-tall span to end-plate span
greater than 0.75 to yield good estimates (from a theoretical viewpoint)
of the side force and yawing moment.

Aspect-ratio and Mach number effects on the rolling isolated tall
are apparent from figure 9. The same effects for a rolling wing, which
may be thought of as an end plete with a zero-span vertical tall, are
illustrated in reference 13. In both cases the magnitude of the forces
can be predicted within 10 percent by slender theory up to leading-edge
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sweep parameters BC of 0.5. It is not unreasonable to expect that
the same sgreement would exist for nonplanar tail arrangements as long
as the sweep of the leading edges of the panels of the configursastion
satisfy the condition

(B X Tangent of apex angle of panel) < 0.5

Lateral Oscillatory Motion

It has long been the practice to estimate the aerodynamic damping
of longitudinal low-reduced-frequency oscillations of lifting wings from
the damping in pitch and damping of the vertical-acceleration motion.

An analogous epproximation may obviously be used for isolated vertical
tail surfaces oscillating laterally in yaw; that is, the lateral damping
can be estimated from the results obtained for the yawing and constant-
lateral-acceleration motions. This approximetion which represents the
first-order frequency terms 1ls given by Cnr - CnB.

Figure 20 has been prepared to show the variation with Mach mumber
of this demping (?nr - cné) for half-delta tails of aspect ratios 1.0,

1.5, and 2.0 with a complete end plate and with no end plate. The yawing
axis for these examples is located at the taill apex. In order to illus-
trate the relative magnitudes of the two terms, the Cné contribution

is also plotted in figure 20. It should be kept in mind in comparing
the no-end-plate damping with the complete-end-plate demping that Cnr

is always greater (more negative) for a vertical tail with a complete end
plate than with no end plate and that for any given aspect ratio Cnr

will decrease (become less negative) as the Mach number is increased.
(Note that negative values of Cp, - Cné indicate positive damping.)

For the Ay = 1.0 tall shown in figure 20(a), the total damping

of the complete-end-plate vertical tail is greater than that of the no-
end-plate vertical tall. This occurs even though the (—Cné) contri-

bution for the complete-end-plate tail is positive and therefore
detracts from the total damping, Cp + (‘Cné)i whereas the ('Cné) con-

tribution of the zero-end-plate Ay = 1.0 taill is slightly negative

over the Mach number range for which the theory is wvalid and hence adds
to the damping. As the aspect ratio is increased from 1.0 to 1.5

(fig. 20(b)), the damping of the complete-end-plate vertical tail
decreases at a more rapid rate than the damping of the no-end-plate tail
to the extent that the total deamping for the complete-end-plate Ay = 1.5
vertical tail is now slightly less than the no-end-plate tail. This
change may be attributed to the fact that the <-CnB> contribution to the
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-complete~-end-plate talil damping increases more rapidly (becoming more
positive) than the (%CHB) component of the no-end-plate tail. Figure 20(c) .

for the Ay = 2.0 vertical tail shows that the damping of the complete-
end-plate vertical tail continues to decrease more rapidly than for the
no-end-plate vertical tail so that the complete-end-plate tall damping
becomes considerably less than that of the no-end-plate tail.

The damping derivatives plotted in figure 20, as pointed out, are
for an axlis location at the tall apex. In order to depict the effect
of moving the yawing axis forward from this point, damping derivatives
have been computed for the aspect-ratio-l1l.5 tail with a yawing axis
located 1 chord ahead of the tail apex (fig. 21). These computations
have been made with the ald of the transfer formulas in table V. A
comparison of figures 20(b) and 21 shows that the damping qualities of
the complete-end-plate vertical tail relative to the zero-end-plate
vertical tail were considersbly improved by moving the yawing axis
forward. This improvement can be accounted for by the appearance of
the B derivatives in the transfer formile for Cnp..

CONCIUDING REMARKS

Pressure-distribution expressions and stabllity derivatives have
been derlved for zero-end-plate triangular vertical talls performing
yawing, rolling, and constant-lateral-acceleration motions by a method
for solving supersonic-conical-flow boundary-value problems. In addi-
tion, by using the yawing and comstant-lateral-acceleration results,
the damping of a vertical tail oscillating laterally in yaw hag been
approximated to the first order in frequency. End-plate effects have
been discussed and suggestions made to ald in their evaluation. In
this connection the complete-end-plate and no-end-plate stability deri-
vatives for the sideslip motion obtained from other sources have been
considered.

The pressure-distribution expressions and stability derivatives
contained in this report are wvalid for a range of Mach mumbers for which
the leading edge is subsonic and the trailing edge supersonic.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., August 10, 195k4.
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APPENDIX A

DEVELOPMENT OF EQUATIONS RELATING THE v-VELOCITY TO THE DISTRIBUTION

FUNCTION f(oc) INTHE y = O PLANE

Equation (8) gives the expression for the velocity potential every-
where in space resulting from a distribution of doublets in the xz-plane
with the strength of each doublet in this distribution being governed by
the doublet-strength function A(x,z). The derivative of this velocity
potential with respect to any one of the coordinates x, y, or z will
give the perturbation velocity in that direction. Of primary interest

herein is the v-velocity, or the y-derivative of this potential, that
is,

B¢D(X:Y: Z)
Jy

for points on the xz-plane. Brown and Adams in reference 15 have con-
structed the velocity potential in space of a distribution of doublets
by use of the following procedure. First, by using equations (8) end
(18), the potential of a line of doublets in the xz-plane at an angle

tan~lo +to the x-axis is determined. This potential is given by

V(X:YJZ) = (Al)

(a2)

4= - By(x - B20z) [ o1 Y >+ 282y 2 - B2(y2 + 22)
(1 - 3202)5/2< 72 - (- 13202)2

Where

2
- B
y X o2

- B202Mk2 - B2(y2 + z2)

The velocity potential of a distribution of line doublets in the xz-plane,
on the vertical tall, with strengths governed by the distributlion func-
tion f(o) mey then be written as

¢ =/: £(0)dy, a0 | (43)

vhere tan~l C = €, the apex angle of the vertical tail.
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Substituting equation (A2) into equation (A3) and differentiating
with respect to y ylelds the following equatlion for the v-velocity
as By/x approaches zero:

Hid

i fﬂ(e'") Br(o)V1 - B2%2(1 - B20)%  3Bf(0)(1 - B2o0)cotn-ly
0

n—>0 (1 - B262)%(Bo - B0)° (1 - B202)7/2

2Bf (o) V1 - 13292:|d(36) N fBC Bf (o)1 - B22(1 - 8200 )2 _

(1 - B202)2 BO+n) | (1 - B2:2)2(Bs - B0 )°

3£ () (1 - B208 )coth™1lt s B2 (o) |1 - B22

d(Bo) -
(1- 3202)5/2 (1 - B202)°

2£(0) V1 - B2
1

(ak)

The singularity which occurs Iin the A term of equation (A2) when
72 -1

y 1is set equal to zero has been accounted for in equation (A%) (see

ref. 13).

By taking the first and second derivatives of equation (A4) with ~
respect to ©, two other useful relations are obtained. They are glven
in the appendix of reference 15 as

a(v/x) _ 1m fB(e'“) 350 (0 )coth~1¢ _ B2(3Bo + 280 + B9B%02)£(0) . B9B2£(0) _
n—o0 Vo (1 - 5202)/2 i - 32201 - 322° W - 3%2(80 - )°

B2£(q) . 2827 (0)Y1 - B2 a(50) +fBC 3B90f (0 )coth™ g
V& - 3%2(1 - B262)(Bo - B) (Bo - B9)> Be+n) | (1 - 5252)5/2

B2(3Bo + 289 + BOB202)£ (o) . " B9B27(0) B2£(0)

- +
V1 - B®2(1 - 3262)2 VL - 3%2(80 - B)° vé - B%2(1 - B262)(Bo - B9)

282¢(0)Y1 - B2 a(80) - 28%r(e) bl - 3%2¢'(0) (15)
(Bo - B8)° a1 - %2 !
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and.

n1—0 Bo - B9)i

- B(6-1)
az(v[x) = lim 6\6 - Bzeah/\ (-1 B3¢(c) a(Bo) +
%2 0 (

BC B3£(0)
6y1 - B22 - d -
‘/];(eﬂ]) (Bo - B9) (bo)

"l _ p292 6fl;](6) + hf(e):| (A6)

"~

" 62 (V/ x)
The factor multiplying the £ (6) +term of the expression for —
®
as 1t eppears in reference 13 is slightly in error and has been corrected
in equation (46).

Considering equations (5) and (7), it is evident that equation (A6)
must be zero for both the rolling and yawing cases. This equation has
already been satisfied by f(®) (eq. (17)), since equation (46) is in
egssence the integrasl equation which was inverted to obtain the general
pressure expression from which £(8) was derived (see ref. 15).
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APPENDIX B
INTEGRATIONS TO OBTAIN v/x

The expression for v/x 1is, for 6 approaching O (see eq. (19)),

@
fBC |E3(MBO’ + RBC)yBo(BC - Bo)tanh~1y1 - 8252 +
o (1 - B22)5/2
@

2(MBo_+ NBC)YBo(BC - Bo) a(Bo) +

®ig
|-

(1 - B262)2
Lim ) 1im |1 (®-1) (Mo + mBC)VBo(BC - Bo(L - B200)3/A - Bzezd(Bc)+
0 —>0 -—>OB 0 (1 - 3202)2(]30 _ Be)a

Go)
fBC (MBo + NBC)VBo(BC - Bo) (1 - B2 )L - B224(Bo) )

B(8+1) (1 - B262)%(8o - B0)°
2(MBO + NBC)YBS (BC - B9 )1 - B2 (81)
By

This expression has been broken into parts as indicated by the circled
numbers with the third part being broken into two additional parts
and @ because of the singulerity in the integrand. Since @ and @

are elementary Integrations similar to those found in most integral
tables (see ref. 16), only @ is dealt with in detail.
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Performing the integrations @ and @ and combining the results yields

V1 - B22 J2(MBS + T)yBe (BC - B9) )

B Bn

x [M(-7BOBC - 2 + 1080 - BC) + N(k - TBC + 4B6 - BOBC)] .

8\6 - BC(1 - B8)

n[M(-2 - 1086 + BC - TBOBC) + W(-k + 4BO - TBC + BOBC)]

8y + BC(1L + B0)

(B2)

vwhere N = NBC. The first term of expression (B2) exactly cancels @ )
end the total of (2), (3), emd (X) for 0—>0 is

ﬂ_[L—a(e +BC) - W(4 - 78C) _ M(-2 + BC) - W(k + 7BC)

8| /1< BC Y1+ BC

(B3)

The following two integrals comprising @ remain to be evaluated:

-5 [®C MBoyBo(BC - Bo)tann 11 - B202d(Bo)

(B4)
B Jg (1 - 3202)5/2
-3 fBC NyBo(BC - Bo)tanh-ly1 - B2:2d(Bo) (5)
B Jg (1 - ]320-2)5/2

It should be mentioned at this point that the integrands of expres-
sions (B4) and (B5) are finite and continuous over the interval O to
BC and therefore must yield a finite quantity when integrated.
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The integration of expression (B4) by parts gives

o=

[ w/Be (e - Bo)tann-111 - Ba;I]BC . M| [ (Bc - 2Bo)tann-l\A - B202a(Bs)
| B - 5202)/2 0 0 201 - 8262)*2fpa(z0 - B0)

fBC Bo(BC - Bc)d(Bcr):l (86)
0

2
Bo(1 - B202)

Integration of expression (BS) by parts gives

BC
-FyBo(BC - Bc)tanh‘lﬁ - B2¢2 /‘BG NBC tanh~l)1 - B2024(Bo)

3/2 0 2BBo(l - 3262)3/2/50(13(? -‘BU)

BBo(1 - B202) 0

ﬁc NYBo(BC - Bo)d(Bo) (B7)
0

z
BB202(1 - B202)

Combining expressions (B6) and (B7) results in

BC
@ _ |-(MBo + ﬁ)mtaﬂh—l‘é _ Beﬂ ]
' 0

BBo(1 - B202)3/2

f@C (MBo + T)VBo(BC - Bo)d(Bo) .
0

BB2¢2(1 - B202 )2

fBC [MBo(BC - 2Bo) -‘T]!B(ﬂta.nh"lvﬁ: - B2024(Bo) (58).
° 2BBo (1 - 13202)3/2\/50(30 - Bo)

The first term of equation (B8), when evaluated at the limits, is either
zero or infinity. The integrend of (1) as was, noted is finite over the
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whole interval; therefore, .infinities introduced as a result of parts
integrations must, in the end, cancel themselves.

The second term of equation (B8) is an elementary integration which
when evaluated (with infinities neglected) yields

L(QM + 4N - 3MBC - SNBC _ -UN - SNBC + 2M + 3MBC> (89)
8B /1 - BC /1 + BC ,

It is now convenient in integrating the third term in equation (B8)
to Introduce the variaeble substitution

+ k
Bo = ¢ (B10)
1+ k€.
so that BC and k are related by
BC = —2% (B11)
1+ k%

The third term in equation (B8) when transformed by equation (B10) may
be written in the form

-1 I (B12)
Bﬁ + k2(1 - k¥2) 1=
where
k
I = f MF(Q)&Q

5 T

]

Io

K ‘
-f k(M + T2 )F(t)at

-k

k —
Mc(1 + k2) + 3Nk2
I3 =L

F(t)a
- (¢)at
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Ihzf w}r(g)dg

R &
K 3 ;
M IGLT:
5=/ =
k N2 - x2
Ie = M- K p(gat

k(1 - t2)(x2 - t2)

k(1 - #e2
I7='f Mk(1 £=)g F(t)at

"k (1 - 2 (x2 - )

tanh-l(ﬁ - kP/L - §2>

1+ Kkt

le - t2)(x2 - t?)

The integrals I, I5, and I7 are elementary and may be determined by

integration by parts. If the multiplicative factor before the summation

sign in equation (B12) is neglected until all the components are totaled,
these three components become

Ms(1 + ¥Hx WR(1 + 1k)x

Iy + Is + I = (B13)
> 1- k2 1-k°
Consider the integration feqpired for Ip, that is,
- - x2)(1-t?
i tannL Va - )](&z S ﬂdg
i (B14)

1= 2 - R
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Iet ¢ = k sin 6; then expression (Bl4) becomes

"/2 tanh_llz/(l - k2)(1 - k2sin ﬂdﬁ

1 + k2sin ©

~n/2 . V1 - k2sin

It can be shown that

(B815)

V(L - x2)(1 - k2sin®0) | _ conn-] Vi-¥ tonn-] Vi - x2sin @
1 + k°sin @ V1 - k2sin9 V1 - x2s1in

tanh~1

(B16)
This fact allows expression (B15) to be rewritten as
n/2 n/2
V1i- x° fL - k8sin o
tanh~1 a tanh™1 s
VE - kPsino V1 - k28in2
- (B17)

o V1 - KPsin% /2 V1 - k2sin

The integrand of the second integrel is an odd function; therefore,
the integration between —n/e and xn/2 of this function is zero. Since
the integrand of the first integral is an even function in ©, this
integration mey be expressed as

Vi- 2 ®
VL - k2sin

2 (B18)

0 V1 - k2sin20

n/2

tanh~1
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After the inverse hyperbolic tangent is replaced by its logarithmic
equivalent and the additional variable transformation

sinly = __g;lL}éi___ (B19)
1 - k2sin?p
is introduced, expression (B18) becomes
x/2
+ d
Jf loge 1+ sin v v (B20)
sin~1{1-k2 -8V 2y - (1 - k)
It is convenient to let
A= sin'lVl - k2
then
sin?\ = 1 - k2
Meking these substitutions in expression (B20) gives
n/2 .
d
f 1loge l+sinv v (BZl)
A 1-sinv %inev - sin2\

which is exactly in the form of the fourth integration formula of
table 335 in reference 17. This formula gives the value of expres-
sion (B2l) as =K'(k). The integration of Ip may now be expressed as

Io = k(M + N2 )xK' (k) (B22)

Using the same integrating procedure for I3, Iy, and I5 as Just

outlined for Ip and the integration formulas in tables 335 and 336
of reference 17 leads to

foe(1 + 22) + 3T [T + X' () - B' ()]
= 1- k2
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I, + Ig = «N(1 - k2)k2II {-(1-k2),ﬁ-k2,g} - ®(1 - ¥2)kK' (k) -

M2 1+ K' (k) - B' (k)]
1 - k2

where TII {—( 1-k2), Vi-ke,%} is a complete elliptic integral of the

third kind with modulus V1 - k2 and parameter -(1 - k2).

Summing all the various parts contributing to the third term in

equation (B8), including the common factor, gives the following
expression:

-1

D e T 7K' (k) Ek3M + Wk2(1 + k2):|
:ltNka -
B(1 - k2)J1 + k2 1-x2

7E' (k) |:2k2ﬁ + Me(1 + k2):]
1- 2

+ N2 (1 - X2)TT (B23)

The addition of expression (B23) to expression (B9) completely
evaluates @ Expression (B3) gives the evaluation of @ s @ , and

Before writing the total integration, the sum of expressions (B2§),

(B9), and (B3), it is desirable to combine expressions (B3) and (B9),
which are functions of BC, and transform them by equation (B1l) to
functions of k. This procedure yields

1(Nk2 + MeD)

BYL + k2(1 - x2)

(B2k4)
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The total integration msy now be written in terms of the param-
eter k as

= K' (k) [25M + Te2(1 + ¥2) | - B' (k) [26BF + Me(1 + x2) | +
B/1 + k2(1 - ¥2)2 E 1 [ j

N2(1 - k2)2:|:£} (B25)

By use of the process commonly known as interchanging the amplitude and
parameter (see pp. 133 to 141 of ref. 21) the elliptic integral of the
third kind appearing in equation (B25) is found to be equivalent to

E' (k)
k2
assume the form given in equation (20) in the body of the report.

. This operation permits the expression for v/x (eq. (B25)) to
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TABLE I.- LATERAL STABILITY DERIVATIVES FOR ZERO-END-PLATE

/

TRYANGULAR VERTICAL TATTS

i

Derivative Formls,
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f 5 1 i/ 5 1 3BC
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TABLE I.- LATERAL STABILITY DERIVATIVES F(R ZERO-END-PLATE

TRTANGULAR VERTICAT, TATLS - Concluded

Derivative Pormla

ol R - IR

4B2CZk" (k)
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TABLE IT.- LATERAL STABILITY DERIVATIVES PR ZERO-END-PLATE
HALF-DELTA VERTICAL TAILS

Derivative Formls
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(o) = 300" + 2%p")
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TABIE ITT.- TATERAL STABILITY DERIVATIVES FOR COMPLETE~END-PLATE
TRIARGULAR VERTICAL TATIS
E?ornmlaa obtained from reference 20]

Derivative ’ ¥o
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TABLE TV.- LATERAL STABILITY DERIVATIVES FOR COMPLETE-END-PLATE

, 'E}(Bc) =

HATF-DELTA VERTICAL TATIS*

1 - Beg2
(1 - 2B2c2)E'(BC) + B2C3K' (BC)

Derivative

Formila
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*(Cz B)C can be

obtained from reference 9.
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TABLE V.- TRANSFER FORMULAS

Stebility derivatives in a
body system of axes with
origin at tail apex

Formulas for transfer to a body system of
axes with origin displaced distances xg
(positive forward) and 2z, (positive
downward) from tail apex

C1p
Cng - 1}:—3 R
Cyg + 1?_10; Cyg
Oy,
Cnp - ;i:;- Cy,
Gy + % or,
Cy, - bx—z Cy,

2
Xo X
Cpy. - E,T(CDB + ch> + <b—° Oy,




y,v, and side force

O WL VOUN

r ana yawing moment g 9

p and roiling moment

Figure 1.~ Sketch of the vertical tall showing the axes system used in L=8562l
the analysis and the positive directlions of the forces, moments,
velocities, and angles. Dashed lines on vertlicel tell indicate that
the tralling edge mey be swept forward or backward.

L
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End pléte

Vertical tail

Figure 2.~ Half-delta tail mounted on a complete end plate. L'85625
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(b) Axes system to which force and moment deri

L9

fé rand yawing moment

y and side force

v P and rolling moment

X

vatives may be transferred
by use of table V.

Figure 3.- Systems of axes,
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Figure k.- Variation of the parameters Nr'BC, M.', N,', M,', and

l/E'(k) with BC. These curves are of use in computing the no-end-
plate stability derivatives given in tebles I and II.



4 —_—
] B e =N
’ \\\_‘[—(’Cyﬂ)"
O P——_
S o
6 ) ] \\\
I e~ T B5Cn)y —r——]
- \___ B P
c? ]
@ m \\\
8 | ]|
lg ———— _(Czn)o
'-(5:& ] [
1/ |
o vy - w3 s L) B 7 .8 e L0
8C

Figure 5.~ Variation of the zero-end-plate half-delta vertical-tail
stebllity derivetives (ch o &nd (Clr) o &nd the stebility-

-RC (cnr)o o
B

derlvative parameter th the leading-edge sweep

parameter EC.

Ohge NI VOVN

%



ﬁ?hﬁllcwiéfﬂ?ﬁihL

Le

PN O
e g KC}@)QL &// —
T T
O "
"]
—‘4
Kcyrg)o] -
Nlmwes
e
-8l '_ L A : -
@ / - 3 < ) ©
8C

Figure 6.- Variation with BC of the quentities RCYB)O—’

B2 ECYQ)J for the half-delta tail. .Note that the stabillty
derivetive (Cyy), 18 given by the sum of [CYB)Q—Jl and I:(CYé>(;|2'

L0

es

o2¢ NI VOVN



8¢ [Cng)] o~ 2 ol

e
—H\\__
T~
\\
& \'\\é\ BCIBE”&!OE
]
o N —
(Crs)= [(c,,é)()]’+ KC’E )0]3 ~_
]
.2
e
AN
~& \\
=
-t \-.___\\ £B [(Cn‘e) O]a
\“ﬁ-—
"o Y 2 3 4 &5 & 7 .8 e £O
8C

: BC l_(cné) 0_J1
Flgure T.- Varietion with BC of the quantities — 3 and,

B KCDE)CZJE for the half-delta tall. Note that the stebllity
- - s - < : : - Lo ~ < 1 - (g v 1
derivative (Cng)o is given by the sum of Kcné)()_'l and L(Cné)QJE.

Ohee NI VOVN

4



.A
V/
3 sl
Vi (c
L euee, S [Cel),
V/
o / /
%\% O—== /.4/
~ hr
° /// [(Cqé)o]l
-2 > el
//
L~
=3 - / i
//’
% v £ 3 P 5 ) 7 8 .9 L0
8c
Figure 8.- Variation with BC of the quantities ol and

gl

B2[(C;.\ | and
I\ *BjojL
KCIB)Q:Ie for the half-delta tall. Note that the stebllity deriva-

tive (Clé)o 16 glven by the sum of [(_Clﬁ)o:ll and Kclﬁ'ofﬂg'

Oh2e WL YDOVM



7570

by or C

o

-8B (Ce )Cp ,"B (CY

LE =
— u
(Cnn);— i \\\ P
/ r I —— —_— |
174\\_
/
8
/
/
-8 (C "
oL || oy L
L~ —
P e el
|
2 Z D el
L~
A 47
o=
o ./ W= 3 R4 w5 Noj 7 8
8C

Figure 9.~ The variation of -B(C1P)o, -B(Cyp)o, end (Cnp)o with BC
for the half-delts tail.

L0

Ohee NI VOVN

44



-8 (C‘,’a')‘” -B (CVSJO, or {C"’ﬁ)"

28 p
v <
o4 <
=
L Creko v
y, 8
2 A
d __—___—'_'_—'&—-—_
vd =

/& i

" G\ A~ -

T
o P 36l /Jﬁ
N+
// e /
.8 pd f//
) _
P // //
P
o o 2 3 A 5 & 7 S O O
8C

Flgure 10.- The variation of -B(CIB)O, -B(CYB)O, and (%13)0 with
BC for the half-delte tail.

O42¢ NI VON



5
75

I8} . L0

/_, — 5 VEXS r/

el 20
N

=
2 il -3 I _

s | Lhlarged Scale
. Joanso N i e
Yglo 3 Y
~ Ac. 75 )
4 / o ' ‘
. 20 et 28 K2 3.8 40 g
ANach numbsr
) I
eH
7
LQ F ¥ lLé i85 -2 LS L0 L7 LS L8 'E0 =44 22 28
) ANlachi  ndmber

Figure 1l.- The veriation of (CYE-OO with Mech number for a mumber of

aspect ratics of g half-delta tail.

o2 NI VOVN

Lg



Atach rnumber

Figure 12.- The veriation of (Cné)o wlth Mach mumber for & number of

‘agspect ratios of a half-delta tail.

¥ O
| A 75
] P s
(: ”‘é/‘o/ —
21 2
20 24 28 3.2 3.6 40 4
\ ! A ANlach number
<t.0
\
&\60
2.0
175
t::;_":__‘__"_’:__—-—-——-—“_“ — | "

\_ e e p— .7\5_

/ : =]
[ .Y
2 —
I — 1|

3
yiej Lt re i3 A &) /6 L7 i8S y2) 20 erf 22 =)

OW2¢ MI VIVN



AT

‘ L=
g
30 S A W
\ . 75 o
A .5 3
a5 \\ o / u
é
/0
20 ! A =/ //
\ A Enlarged Scale
N 40 / |
C,.) /5 . =&
('zp lo #217X 20 24 28 82 36 40 44
\\\\ AMach number
£O [~
3.0
AN
\\\ 20 | 75
; LS
LES 10
Ol— 5
)
“5
L0 L LE /3 o4 5 .8 L7 ’8 L8 20 2. e.2 a3

Aach number

Figure 13.- The variation of (91é>0 with Mach number for a mmber of

aspect ratios of a half-delta tail.

6%



60 NACA TN 3240

10
i
=
43
b =
o]
c
]
3
3
(V)
o /0

Figure 1.~ Variation of the pareameters 1/E'(BC) and G(BC) with BC.
These curves are of use in computing the complete-end-plate stabllity
derivatives given in tables III and IV.
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